Untangling Trade and Technology: Evidence from Local Labor Markets

MIT and NBER CEMFI and IZA UCSD and NBER

September 21, 2012

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

1 / 55

The Bundestag Eagle

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012 2 / 55

Untangling Trade and Technology

Key forces shaping labor markets in industrialized nations?

• Universal hypothesis: "Trade and Technology"

Why are these two terms always used together?

- Backward induction: "Effects" visible, searching for causes
- Sense of inevitably: Anything can either be automated or done in China
- Output the second se [Blinder '07]

3 / 55

Do "Trade and Technology" have Comparable Effects?

Similar local labor markets affected?

- Are locations most exposed to trade also most subject to automation?
- ② Similar employment effects?
 - Employment, unemployment, labor force non-participation (NILF)
- Similar demographic groups affected?
 - Male/Female, College/Non-College, Younger/Older?
- Similar tasks affected abstract, routine, manual?
 - Do both trade and technology mostly just replace routine tasks?
- Similar sectors affected?
 - Do both primarily affect manufacturing?

Current literature offers limited evidence on these questions

- 3

イロト イポト イヨト イヨト

Untangling Trade and Technology Empirical Challenges

Measuring concurrent impacts of trade & technology

- Small N problem
- ② Difficulty of measuring trade exposure
- (a) 'Offshorability' vs. 'automatibility' What is distinctive in each?
 - Inconsistent definitions of task constructs
- Offshoring vs. trade in goods
 - Distinctions? Relative magnitudes?
- S Focusing only on employed, excluding unemployed, NILF

Objective: Untangling 'Trade and Technology'

1 Taking measurement seriously

- Measuring technology using robust task measures
- Measuring trade in goods using import shocks

Overcoming small N problem

- Outcomes at the Commuting Zone (CZ) level: 722 local labor markets
- Measuring 'local general equilibrium' effects

Sector 2 Sector 2

- Employment status: Employment, unemp, non-participation
- Demographic breakdown: Sex, age, education
- Task allocation: Abstract, Routine, Manual occupations
- Sectoral breakdown: Manufacturing v. non-manufacturing

イロト イポト イヨト イヨト

- 31

Recent Work 1: Technological Δ and labor markets

Capital-skill complementarity

- **Cost share:** Katz & Murphy '92, Berman, Bound, Griliches '94, Autor, Katz & Krueger '98, Machin and Van Reenen '98, Card & Lemieux '01, Carneiro & Lee '11, Lindley & Machin '11
- **Prod'n f'n:** Krusell, Ohanian, Rios-Rull & Violante '00; Lewis '11; Beaudry, Doms & Lewis '11 and '12

Task approach:

• Autor, Levy & Murnane '03; Spitz-Oener '06; Autor & Dorn '11; Goos, Manning & Salomons '11; Michaels, Natraj & van Reenen '12; Firpo, Fortin & Lemieux '12

• Broad consensus of this literature:

- Complementarity between IT and educated labor
- IT associated with displacement of routine occs/tasks
- Of course, not everyone agrees...

- 31

Recent Work 2: Trade and Labor Markets

- Structural GE approaches: Models of wage adjustment
 - Early literature: Berman-Bound-Machin '98; perfect labor mobility (eg, Feenstra & Hanson '99)
 - Recent: Search frictions (eg, Helpman et al. '12)
- Reduced form approaches: Firm, industry, regional impacts
 - Firms (eg, Bloom Draca & Van Reenen '11)
 - Industries (eg, Menezes-Filho & Muendler '11)
 - **Regions** (eg, Topalova '10; Kovak '11; Autor, Dorn & Hanson '12, Dauth, Findeisen & Suedekum, '12)

• A variety of conclusions

- Traditional: Trade too small to matter, does not affect wages
- $\bullet\,$ Emerging: Trade w/ China, other LDCs \to Large effects on rich country labor markets

Recent Work 3: Considering Trade + Tech Simultaneously

• Theoretical models:

- Grossman & Rossi-Hansberg '08; Costinot & Vogel '10; Acemoglu & Autor '11
- Estimating technology, offshoring 'effects' using job tasks:
 - Blinder '07; Blinder & Krueger '10; Autor & Dorn '11; Goos, Manning & Salomons '11; Michaels, Natraj & van Reenen '12; Firpo, Fortin & Lemieux '12, Oldenski '12
 - No work studying technology + trade in goods with equal seriousness

• Results from this literature: All possibilities confirmed!

- Large offshoring effects: Blinder '08, Blinder-Krueger '10, Firpo-Fortin-Lemieux '11, Oldenski '12
- Small, non-robust offshoring effects: Autor & Dorn '11; Goos, Manning & Salomons '11; Michaels, Natraj & van Reenen '12

9 / 55

イロト 不得下 イヨト イヨト 二日

Agenda

Measurement

- Local labor markets
- Exposure to computerization/automation
- Exposure to import shocks
- Ontangling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Defining Local Labor Markets: "Commuting Zones"

- $\bullet~$ Map \sim 3,150 mainland U.S. counties into 722 commuting zones
 - Strong commuting ties within a CZ, weak commuting ties across CZs
- Permits analysis of 'Local General Equilibrium' effects
 - Topolova '10; Autor & Dorn '11; Beaudry, Doms & Lewis '11 & '12; Autor, Dorn, Hanson '12. (Topel '86: Local labor market approach)

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

11 / 55

Measuring Susceptibility to Automation

• Autor-Dorn '11 Routine Task Intensity by occupation k

$$RTI_{k} = \ln\left(T_{k,1980}^{R}\right) - \ln\left(T_{k,1980}^{M}\right) - \ln\left(T_{k,1980}^{A}\right),$$

- T_k^R , T_k^M , T_k^M are Routine, Manual, Abstract task input in occ in 1980
- Label top-third (weighted by employment) as "Routine Occs"

	RTI Index	Abstract Tasks	Routine Tasks	Manual Tasks
Managers/Prof/Tech/Finance/Public Safety	-	+	-	-
Production/Craft	+	+	+	-
Transport/Construct/Mech/Mining/Farm	-	-	+	+
Machine Operators/Assemblers	+	-	+	+
Clerical/Retail Sales	+	-	+	-
Service Occupations	-	-	-	+

Task Intensity of Major Occupation Groups

The table indicates whether the average task value in occupation group is larger ("+") or smaller ("-") than the task average across all occupations. Shaded fields indicate the largest task value for each occupation group.

Autor-Dorn-Hanson

Routine Task Share: Non-Monotone in Occ Skill (Wage)

Share of 'Routine' Occupations by Occupational Skill Percentile

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

- I A P

3. 3

13 / 55

Occupations with High v. Low RTI

	A. Occupations with Highest RTI Scores	B. Low-Skill Occupations with Lowest RTI Scores	C. High-Skill Occupations with Lowest RTI Scores
1	Butchers & meat cutters	Bus drivers	Fire fighting, prevention & inspection
2	Secretaries & stenographers	Taxi cab drivers & chauffeurs	Police & detectives, public service
3	Payroll & timekeeping clerks	Waiters & waitresses*	Primary school teachers
4	Bank tellers	Truck, delivery, & tractor drivers	Managers of properties & real estate
5	File clerks	Door-to-door/street sales, news vendors	Secondary school teachers
6	Cashiers	Carpenters	Electrical engineers
7	Typists	Telecom & line installers & repairers	Physicians
8	Pharmacists	Housekeepers, maids, butlers & cleaners*	Computer systems analysts & scientists
9	Bookkeepers, accounding clerks	Health & nursing aides*	Civil engineers
10	Postal clerks, except mail carriers	Electricians	Industrial engineers

Autor-Dorn-Hanson

Untangling Trade and Technology

 < □ >
 < ⊡ >
 < ⊡ >
 < ⊡ >

 September 21, 2012

Instrumenting Routine Share Measure by CZ

Isolating long-run component of RSH_i^* by CZ

- *RSH*^{*}_{*i*} is long-run, quasi-fixed industrial structure determining CZ's routine share
- $RSH_{it_0} = RSH_i^* + \nu_{it_0}$ is observed value of RSH at point in time
- ν_{it_0} is unobserved, time-varying factors affecting CZs' routine share

Instrumenting for RSH^{*}_i

- $E_{ni,1950}$ is employment share of industry $n \in 1, ..., N$ in CZ i in 1950
- $R_{n,1950}$ is routine occ share in industry *n* in 1950
- $\widetilde{RSH}_i = \sum_{n=1}^{N} E_{n,i,1950} \times R_{n,-i,1950}$, serves as instrument for RSH_i^*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Geography of Routine Task Exposure

Routine Share by Commuting Zone, 1990-2007

Autor-Dorn-Hanson

Untangling Trade and Technology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 September 21, 2012

16 / 55

Agenda

Measurement

- Local labor markets
- Exposure to computerization/automation
- Exposure to import shocks
- Ontangling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Trade Exposure: Rising Trade between U.S. and China

Trade Flows Between U.S. and China (Billions of 2007 US Dollars)

Rising Trade: Other High Income Countries & China

Trade Flows between Other High Income Countries and China (Billions of 2007 US Dollars)

Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland

The rise of China since the early 1990s

Between 1990 and 2007

- China accounted for 75% of growth of Least Developed Country manufacturing value-added
- US imports from China increased by 11.5 times
- US exports to China are small, below 15% of bilateral trade flows

"Reform and Opening" \rightarrow Surge in Chinese manufacturing

- Opening to trade and Foreign Direction Investment
- Marketization, privatization, easing controls on labor mobility
- Median Chinese manufacturing plant had 15% annual productivity growth 1992 – 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

Ratio of Chinese Imports to U.S. Domestic Consumption

Figure 1. Import Penetration Ratio for U.S. Imports from China.

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

A B A A B A

< A

э

But Exposure Varies Within and Across Industries

Measuring Supply-Push Component of Rising China Trade

Why focus on the "supply push?"

• Separate the impact of international competition from consumer demand

China's export growth as supply push: Driven by...

- Rural to urban migration (over 150m migrants moved to cities)
- Opening to foreign investments, technology, imported inputs
- World Trade Organization accession in 2001

This motivates our instrumental variables (IV) strategy

・ロット 本語 とう キョット キョー ろうぐ

Motivate trade shocks using Eaton and Kortum '02

• CZ i's sales in industry j to destination market n are:

$$X_{nij} = \frac{T_{ij}(w_{ij}\tau_{nij})^{-\theta}}{\Phi_{nj}}X_{nj}, \qquad \Phi_{nj} \equiv \sum_{h} T_{hj}(w_{hj}\tau_{nhj})^{-\theta}$$

- T_{ij} is productivity of industry j in CZ i
- w_{ij} is unit production cost of industry j in CZ i
- τ_{nij} is trade cost between CZ *i* and market *n*
- Φ_{nj} is "toughness" of competition for industry j in market n
- X_{nj} is total spending on industry j in market n
- θ is productivity dispersion parameter

医静脉 医原外 医原外下颌

Effect of China's Δ TFP or Δ au on CZ's product demand

- Productivity growth in China or a reduction in US trade barriers on Chinese goods increases market toughness facing CZ *i*
- Derive the log change in demand for goods produced by CZ *i* due to China's productivity and trade costs (across all industries)

$$\hat{Q_i} = -\sum_j rac{X_{uij}}{X_{uj}} imes rac{X_{ucj}(\hat{A}_{cj} - heta \hat{ au}_{cj})}{Q_i}$$

- X_{uij}/X_{uj} is CZ *i*'s sales as a share of US purchases in industry *j*
- Q_i is total output in CZ i
- $X_{ucj}(\hat{A}_{cj} \theta \hat{\tau}_{cj})$ is growth in US imports from China due to China's productivity growth and change in trade costs facing China
- Q̂_i is an exposure index: Allocates exogenous component of ΔChina goods imports to CZ's according to their output of those goods

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

21, 2012 25 / 55

Proxying for Δ Chinese import exposure at CZ level

Empirical proxy for \triangle CZ's import exposure:

$$\Delta IPW_{uit} = \sum_{j} \frac{E_{ijt}}{E_{jt}} \frac{\Delta M_{ucjt}}{E_{it}}$$

- Allocates to each CZ a share of total national import growth
- Divides this import value by a CZ's total employment
- Yields measure of "import growth per worker" (in \$1,000's of USD)
- *IPW_{uit}* is trade-induced demand shock for CZ's goods output

Note two sources of variation in this measure:

- Overall manufacturing employment share in CZ
 - Control for initial manuf emp, ID comes from variation in industry mix
- Variation in CZ's manufacturing industry mix

IV strategy: Exogenous Variation in Chinese Import Shocks

Source of endogeneity

• U.S. imports from China affected by U.S. demand shocks as well as China's growing productivity and falling trade costs

Instrumental variables approach

• Instrument for ΔIPW_{it} using other high-income countries' imports from China (and lagged CZ employment)

$$\Delta IPW_{oit} = -\sum_{j} \frac{E_{uijt-10}}{E_{ujt-10}} \left[\frac{\Delta M_{ocjt}}{E_{it-10}} \right]$$

2SLS First Stage

Panel A: 2SLS 1st Stage Regression, Full Sample

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

28 / 55

Geography of Trade Exposure

Trade Exposure by Commuting Zone, 1990-2007

Untangling Trade and Technology

 < □ >
 < ⊡ >
 < ⊡ >
 < ⊡ >

 September 21, 2012

Δ China imports per worker (in 1,000s of US\$) across CZs

Appendix Table 1. Descriptive Statistics for Growth of Imports Exposure per Worker across C'Zones

I. 1990-2000		II. 2000-2007				
A. Percentiles						
90th percentile	2.05	90th percentile	4.30			
75th percentile	1.32	75th percentile	3.11			
50th percentile	0.89	50th percentile	2.11			
25th percentile	0.62	25th percentile	1.60			
10th percentile	0.38	10th percentile	1.03			

Over all CZ's:

- 75/25 percentile Δ : \$1,510 in 2000-2007 (over 10 yrs)
- 75/25 percentile Δ : \$700 in 1990-2000
- Average per decade over 1990-2007: \$1,105

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Outling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Geography of Technology and Trade Exposure

Are same CZs equally exposed to trade and technology?

No: Technology, trade exposure weakly correlated across CZs

- $\rho(RSH_{j,1990}, ImpWkr_{j,1990-2000}) = -0.02$
- $\rho(RSH_{j,2000}, ImpWkr_{j,2000-2007}) = 0.01$

Are Same CZs Exposed to Trade and Technology?

• Plotting CZs that are *either* high-high *or* low-low on both technology and trade exposure (high, low $= 4^{th}$, 1^{st} quartiles)

Untangling Trade and Technology

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Outling trade and technology
 - Similar local labor markets?
 - o Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Data Sources: Time Periods 1990-2000, 2000-2007

Estimation

Regression model

$$\Delta Y_{it} = \gamma_t + \beta_1 \Delta IPW_{uit} + \beta_2 RSH_{it} + X'_{it}\beta_2 + e_{it}$$

- ΔY_{it} is 10-year equivalent change of emp, unemp, tasks/occs
- γ_t is a period effect (time periods 1990–2000, 2000–2007)
- ΔIPW_{uit} is import exposure
- RSH_{it} is routine occupation emp share at the start of period
- X_{it} contains start of period CZ manufacturing share, CZ demographics
- Observations weighted by CZ population; SEs clustered by state

Instrumental variables

- ΔIPW_{uit} is instrumented by ΔIPW_{oit}
- RSH_{it} is instrumented by \widetilde{RSH}_i

Image: A matrix

Overall Employment Impacts

Import Exposure per Worker, Initial Routine Employment Share and Changes in Employment Status in Commuting Zones, 1990-2007

All Working-Age Adults

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

(日) (同) (三) (三)

37 / 55

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Outling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Employment Impacts: Males

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

< □ > < □ > < □ > < □ > < □ > < □ >

39 / 55

э

Employment Impacts: Females

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

Females

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

40 / 55

Employment Impacts: Age <40

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

Age <40

Autor-Dorn-Hanson

Untangling Trade and Technology

< □ > < □ > < □ > < □ >
 September 21, 2012

Employment Impacts: Age 40+

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

Age 40+

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

< □ > < □ > < □ > < □ > < □ > < □ >

Employment Impacts: No College

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

Non-College

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

< □ > < □ > < □ > < □ > < □ > < □ >

43 / 55

Employment Impacts: College+

Import Exposure per Worker, Initial Routine Employment Share and Changes in Labor Force Status in Commuting Zones, 1990-2007

College Education

Autor-Dorn-Hanson

September 21, 2012

< □ > < □ > < □ > < □ > < □ > < □ >

э

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Outling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Measuring Impacts on Task Inputs

Employment by task/occupation

- Abstract tasks
 - Managerial, Professional and Technical occupations
- 2 Routine tasks
 - Production, Clerical, Retail, Sales occupations
- Manual tasks
 - Craft, Mechanics, Agricultural, Service occupations
- On-participation
 - Useful to recognize a fourth 'option'

Regression model (2SLS)

$$\Delta Y_{it}^{k} = \gamma_{t} + \beta_{1} \Delta IPW_{uit} + \beta_{2} RSH_{it} + X_{it}^{'}\beta_{2} + e_{it}$$

• where $k \in \{\text{Abstract Occ, Routine Occ, Manual Occ, NILF}\}$

Technology, Trade and Tasks

Overall Impacts of Trade and Technology on Tasks

Import Exposure, Initial Routine Employment Share and Changes in Occupation/Task Employment in Commuting Zones, 1990-2007

All Working-Age Adults

< □ > < □ > < □ > < □ > < □ > < □ >

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Outling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Onclusions and next steps

Technology, Trade and Tasks

Trade and Tech in Manufacturing: Standardized P75 v. P25 CZ-Level Effects, 1970 - 2007

Import Exposure per Worker, Initial Routine Employment Share and Changes in Occupation/Task Employment

P75 v. P25 Commuting Zone Level Impact , 1990 - 2007

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012 49 / 55

Technology, Trade and Tasks

Trade and Tech in Non-Manufacturing: Standardized P75 v. P25 CZ-Level Effects, 1970 - 2007

Import Exposure per Worker, Initial Routine Employment Share and Changes in Occupation/Task Employment

P75 v. P25 Commuting Zone Level Impact , 1990 - 2007

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012

э

Trade Effects in Manufacturing by Decade: Standardized P75 v. P25 Impact

Import Exposure and Changes in Occupation/Task Employment

P75 v. P25 Commuting Zone Level Impact by Decade

Technology, Trade and Tasks

Trade Effects in Non-Manufacturing by Decade: Standardized P75 v. P25 Impact

Import Exposure and Changes in Occupation/Task Employment

P75 - P25 Commuting Zone Level Impact by Decade

52 / 55

Agenda

- Measurement
 - Local labor markets
 - Exposure to computerization/automation
 - Exposure to import shocks
- Ontangling trade and technology
 - Similar local labor markets?
 - Similar employment impacts?
 - Similar demographic groups?
 - o Similar tasks affected abstract, routine, manual?
 - Similar sectors?
- Occursion Conclusions and next steps

Technology & Trade: Same Local Labor Market Impacts?

- Similar local labor markets?
 - No. Different regions. Trade has larger effects in low-education areas
- ② Similar employment effects?
 - No. Trade exposure reduces epop raises unemp, NILF
 - Routine-displacement has no significant effect on total epop, unemp, NILF
- Similar worker groups?
 - Somewhat. Both disproportionately affect older, less-educated workers
 - But routine-displacement has larger impacts on females
- Similar tasks?
 - No. Trade displaces Manual, Routine and Abstract tasks
 - $\bullet~\mbox{Routine displacement} \rightarrow \mbox{Rising emp.}$ in Manual and Abstract occs
- Similar sectors?
 - No. Trade impacts concentrated in manufacturing
 - Routine displacement concentrated in non-manufacturing

Autor-Dorn-Hanson

Untangling Trade and Technology

September 21, 2012 54 / 55

Conclusions and Next Steps

Worker level impacts

- How are individual workers affected by rising trade exposure in their industry?
- Distinct question from "local general equilibrium" effects studied here
- Distinguishes *direct* effects from spillover/multiplier effects

• Presentation tomorrow

- Autor-Dorn-Hanson, "Trade Adjustment: Worker Level Evidence"
- Saturday Sept 22, 13:45-15:30, session E13, Room 1.7